Half-discrete Hardy-Hilbert’s inequality with two interval variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function

By means of the weight functions, the technique of real analysis and Hermite-Hadamard's inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Weight Characterizations for the Discrete Hardy Inequality with Kernel

A discrete Hardy-type inequality ( ∑∞ n=1( ∑n k=1dn,kak)un) ≤ C( ∑∞ n=1 a p nvn) is considered for a positive “kernel” d = {dn,k}, n,k ∈ Z+, and p ≤ q. For kernels of product type some scales of weight characterizations of the inequality are proved with the corresponding estimates of the best constant C. A sufficient condition for the inequality to hold in the general case is proved and this co...

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

On Best Extensions of Hardy-hilbert’s Inequality with Two Parameters

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parameters λ and α and using the Beta function. The equivalent form and some reversions are considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2013

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2013-485